Mexico’s Biocultural Diversity in Peril

Omar Vidal1,2 & Richard C. Brusca1

1. Bosque de Granados 141, Col. Bosques de las Lomas, Ciudad de México 11700, México; vidalpomar@gmail.com
2. Department of Ecology & Evolutionary Biology, University of Arizona, United States of America; rbrusca@desertmuseum.org

* Correspondence

ABSTRACT. Introduction: Places with high species diversity have high linguistic diversity, whereas areas with low species diversity tend to have low linguistic diversity. Objective: To characterize the intriguing relationship between biological and cultural diversity, a correlation that has been discussed at a global scale, but here tested for the first time in Mexico. Methods: We compiled exhaustive databases on both endangered species and endangered languages, and reviewed available literature on Mexico’s biocultural diversity with a focus on endangered and critically endangered species and languages. Results: With 364 living languages, Mexico is the world’s fifth most linguistically diverse country, but 64 of these languages are facing a very high risk of disappearance and 13 have already disappeared. Mexico is also the fourth most biologically diverse country, but 1213 species of its flora and fauna are threatened with extinction and at least 127 species were recently extinct. Conclusions: Indigenous peoples are custodians of much of the world’s biocultural diversity. As the world grows less linguistically and culturally diverse, it is also becoming less biologically diverse. Mexico’s biological and linguistic diversity show strong geographic overlap, with the states of Oaxaca, Chiapas, Veracruz, Guerrero, and Michoacán harboring most species and most languages. Similarly, Mexico’s biodiversity hotspots mirror language hotspots, and areas with the highest number of endangered species overlap with areas where the endangerment of languages is also the highest.

Key words: languages, linguistics, traditional knowledge, indigenous people, biodiversity, Mexico, endangered species, extinction.

The United Nations Convention on Biological Diversity defines “indigenous” as those people who have historical continuity with pre-invasion and pre-colonial societies, that have developed on their own territories, and who consider themselves distinct from other sectors of society now prevailing in those territories. To raise awareness of their importance for humanity, the United Nations designated 2019 as the “International Year of Indigenous Languages.”

Biocultural diversity encompasses the link between biological diversity and humankind’s cultural diversity, and identification of ecological conservation hotspots and linguistics are the two pillars of biocultural diversity analyses. Trends in biological diversity and cultural/linguistic diversity parallel one another (Maffi, 2001, 2005) and there is a documented correlation between the two (Mühlhäusler, 1995; Harmon, 1996; Nettle & Romaine, 2000; Oviedo, Maffi, & Larsen, 2000; Moore et al., 2002; Sutherland, 2003; Stepp et al., 2004; Fincher & Thornhill, 2008; Gorenflo, Romaine, Mittermeier, & Walker-Painemilla, 2012). Research across both continental and regional scales have identified patterns of co-occurrence...
of linguistic and biological diversity around the world, and nations/areas with high biodiversity also tend to have high linguistic and cultural diversity (Toledo, 1994; Harmon, 1995, 1996; Nettle, 1996; Nettle & Romaine, 2000; Stepp et al., 2004; Loh & Harmon, 2005; Toledo & Barrera-Bassols, 2008; Gorenflo et al., 2012). The countries with the highest linguistic diversity (jointly having 54 % of all living languages) are Papua New Guinea, Nigeria, India, Mexico, Cameroon, Australia, the Democratic Republic of the Congo, and China (Harmon, 1995); and the most bioculturally diverse countries as measured by their centers of biological, linguistic, and agricultural diversity, as well by the presence of indigenous peoples, include those plus Indonesia, Brazil and Peru (Toledo & Barrera-Bassols, 2008).

The conceptual framework of biocultural diversity draws upon a common interest in understanding and preserving the relationships between biological, linguistic, and cultural variety and range. For indigenous people, biological, cultural, and linguistic diversities are intrinsically linked, as are environment and development. Biocultural diversity is often used as an index, or measure, to assess geographical regions in terms of the status or linkages between biological, cultural and linguistic diversity (Harmon, 1996; Sutherland, 2003; Harmon & Loh, 2010; Gorenflo et al., 2012). Languages, like genes, are “documents of history,” and a vast amount of information about our past is inscribed in the content and structure of the approximately 7,100 languages that are spoken today (Gray, Quentin, & Greenhill, 2018). Present-day indigenous cultures and languages are an expression of the long historical legacy of interrelationships between humans and nature (Toledo & Barrera-Bassols, 2008). Conservation practitioners should also embrace biocultural approaches for social justice, legal, and practical reasons (Gavin et al., 2013, 2015). This view was convincingly articulated in the Indigenous Peoples International Declaration on Self-Determination and Sustainable Development at the 2012 United Nation’s Rio+20 Summit, which reaffirmed that cultural belief systems and worldviews of indigenous people are fundamental to biodiversity protection and sustainable development.

Species are the basic units of biodiversity, while languages serve to measure the diversity of cultures, and the striking parallels in their evolution suggest that nature and culture evolved in similar fashion (Harmon, 1996). In practical terms, there is an emphasis on language over other aspects of culture and identity because it strongly circumscribes an indigenous group. Homo sapiens displays a remarkable linguistic diversity that correlates strongly to areas of plant and animal diversity—and both may be moderated by similar environmental factors, such as temperature and rainfall. Both domains also involve the transmission of discreet heritable units: genes in biology, and socially-transmitted units such as words and morphosyntax in linguistics. Both can be altered as they pass through generations and thus, they display a hierarchical relationship over time. Languages, like biological species, are therefore related through nested patterns of descent allowing their evolutionary history to be depicted in branching patterns, or trees (Dunn, 2014). Of course, some words do enter languages by way of diffusion, or “borrowing” from other cultural sources (Campbell, 1997), and these instances are comparable to horizontal gene transmission in the scheme of biodiversity assessment and phylogenetics. Nonetheless, just as the historical evolution of species can be inferred by phylogenetic analysis, so the history of linguistic diversity can be estimated by phylogenetics (e.g., Bouckaert et al., 2012; Birchall, Dunn, & Greenhill, 2016; Gray et al., 2018). In both cases, the phylogenies can be overlain by areas of endemicity to produce dated phylogeographic reconstructions. In the case of cultures and linguistics, this amounts to what has been called “virtual archeology.”

Three types of language diversity have been recognized (Gavin et al., 2013). Language richness refers to the number of languages within a given area. Phylogenetic language diversity is the minimum total length of all branches needed to span a set of “language
taxa” on a phylogenetic tree. *Linguistic disparity* refers to the range of expression in a language trait within a clade. Languages differ on a multitude of structural levels, including phonology, morphology, and syntax. There is a strong latitudinal gradient in both language richness and biological richness (Gavin et al., 2013, 2015).

It has been proposed that human languages reached their maximum number (estimated at 12,000) at the end of the Pleistocene, directly predating the rise of agriculture (Harrison, 2007). In the non-sedentary hunter-gatherer societies of the time, the dominant force in language creation is likely to have been fissioning mechanisms (Hamilton, Milne, Walker, Burger, & Brown, 2007), although such historical “splits” might be blurred by inter-language diffusion, or borrowing, as noted above (e.g., Campbell, 1997). The number of languages has been in decline since the Neolithic as agricultural groups have spread, replacing hunter-gatherers, and population movements have tended to reduce global language diversity (Nettle, 1999a, 1999b). A substantial body of theoretical work suggests that the spread of politically complex agricultural societies was a dominant factor in the reduction of language diversity (Renfrew, 1994).

After examining nearly 7,000 languages spoken on Earth today against the planet’s biological diversity and biodiversity hotspots, Gorenflo et al. (2012) found that more than 4,800 languages occur in regions containing high biodiversity, and 3,202 languages occur in 35 previously defined biodiversity hotspots. Of the languages found in biodiversity hotspots, 1,553 are spoken by 10,000 or fewer people, and 544 are spoken by 1,000 or fewer people.

Greater geographic heterogeneity, as measured by more-diverse habitats or higher topographic complexity, is commonly correlated with greater species diversity (e.g., Kerr & Packer, 1997). A link between geographic heterogeneity and diversity also appears to exist for languages. Environmental variables have been noted as important predictors of linguistic diversity patterns, and historical processes of co-evolution of small-scale human groups with their local ecosystems have been proposed (Harmon, 1996; Maffi, 1998).

Three narratives have been offered to explain the correlation between biological and cultural diversity (Maffi, 2001): *geographic determinism* (both species and languages diversify in heterogeneous landscapes with geographic barriers); *ecological determinism* (linguistic diversification occurs in response to high biodiversity as cultural groups encode their knowledge of rich biotas); and *historic determinism* (areas of high linguistic diversity today are “residual,” persisting because of their geographic isolation from extensive agricultural development, implying that now-impooverished areas were once more diverse).

Today, linguistic diversity and biological diversity face similar threats and are both in crisis because of human population growth and increasing consumption (Loh & Harmon, 2014). One of the biggest challenges for biocultural conservation is ensuring that indigenous peoples obtain recognition of their rights to the resources found on their lands and territories on which they depend on for their economic, spiritual, cultural, and physical well-being (Inter-American Commission on Human Rights, 2009), and that these translate into tangible policies and action at the national and international level. Which is, by no means, an easy task since it has been estimated that about 12-20 % of areas under human management worldwide are indigenous lands (Toledo, 2001a).

Different cultures perceive and value biodiversity in different ways because of their distinct heritage and experience. Posey (1999) argued that cultural diversity parallels ecological diversity, and local traditional adaptations are often the most environmentally sound. Through time, as local communities interact closely with their environment and modify it as they adapt to specific ecological niches, they acquire detailed knowledge of the environment and how to manage it for their long-term benefit. Languages thus carry deep eco-cultural knowledge, and embedded in indigenous
languages is knowledge about habitats, plant life, animal behavior, conservation methods, and many other aspects of the natural world (Harrison, 2007).

The world’s inhabitants today speak around 7100 languages, patterned unevenly across the Earth. But, roughly half of the world speaks only 24 languages, and have from tens to hundreds of millions of speakers, while the other half of the population speaks the remaining 7073 languages, of which around half have fewer than 10000 speakers (Lewis, Simons, & Fennig, 2016; Simons & Fennig, 2018). Since 1950, 230 languages have disappeared and at least 3000 have become endangered, of which 577 are critically endangered (78 have 10-50 speakers, and 146 have fewer than 10 speakers) (United Nations Educational, Scientific and Cultural Organization [UNESCO], 2010). And, according to UNESCO, nearly 40 % of the world’s population lack access to education in a language that they speak or understand. In the next 30 years, over half of the world’s languages will likely go extinct or be spoken by only a few old people (Harrison, 2007).

While much effort has and is being spent to stem the loss of plant and animal species, the loss of languages is receiving far less attention and is actually being ignored in many parts of the world, particularly in developing countries, for a variety of reasons. As the world grows less linguistically and culturally diverse, it is also becoming less biologically diverse. Biologists estimate an annual loss of species at 1 000 times or greater than historic rates, and linguists predict that 50-90 % of the world’s languages will disappear by the end of this century (Nettle & Romaine, 2000; Gorenflo et al., 2012).

More than 70 % of the world’s biodiversity is found in only 17 countries, of which 15 are in the developing world and 6 are in Latin America (Mittermeier, Myers, Gil, & Mittermeier, 1999). The most species-rich, human-accessible environments are tropical rain forests and deciduous forests, coral reefs, and large tropical lakes (Millennium Ecosystem Assessment [MEA], 2005). Even though the world’s tropical forests occupy only 7 % of the land area, they have been estimated to contain over half the world’s species (Oviedo et al., 2000; Corlett & Primack, 2010). Of the 93,579 species of plants and animals assessed by the Red List of the International Union for the Conservation of Nature (IUCN) until 2018, more than 26000 (28 %) are threatened with extinction, including 41 % species of amphibians, 35 % of reptiles, 25 % of mammals, 13 % of birds, 7.5 % of bony fishes and 63 % of cycads. Those estimates, however, are very conservative given that the species evaluated only represent about 4 % of the nearly two million living species described to date (Brusca, Moore, & Shuster, 2016; Primack & Vidal, 2019), and far less than the estimated total number of species on Earth (estimates range from around 10 to 100 million species of prokaryotes, protists, plants, fungi, and animals) (Mora, Tittensor, Adl, Simpson, & Worm, 2011; Brusca et al., 2016). At least 479 species of vertebrates and 116 species of plants have gone extinct in modern times, due mainly to habitat destruction and fragmentation, overexploitation, and invasive species. Although the global extent of protected land has roughly doubled in size since the 1992 Earth Summit in Rio de Janeiro, with more than 202,000 protected areas now covering 14.7 % of the world’s terrestrial area, 6×10^6 km2 (32.8 %) of that protected land globally is under intense human pressure (Jones et al., 2018).

In this paper, we test the hypothesis that a pattern of co-occurrence of biological and cultural diversity exists in Mexico. We do this by examining the available data on species diversity and language diversity across all Mexican states, and by looking for areas of overlap between regions of high diversity and extinct/threatened/endangered diversity in species and languages.

MATERIALS AND METHODS

Much has been written on Mexico’s biodiversity (for a review see Sarukhán et al., 2017). However, little has been published in the peer-reviewed literature on its rich linguistic
diversity. We extensively reviewed the available literature, including government reports, on Mexico’s biocultural diversity with a particular focus on endangered and critically endangered species and languages to look for overlapping geographical distributions and threats. Most of the information we use regarding the languages of Mexico comes from an exhaustive appraisal of reports by Mexico’s National Institute of Indigenous Languages (Instituto Nacional de Lenguas Indígenas [INALI], 2012) and official published government records (Diario Oficial de la Federación, 2008, 2010a). From these sources, we compile a robust set of data, though much of it is qualitative (not quantitative).

Our ranking criteria for biological species follow the IUCN, and we consider a species critically endangered when it faces an extremely high risk of becoming extinct, and endangered when it faces a very high risk of becoming extinct (IUCN, 2018). We follow two closely aligned criteria for defining endangered languages. The first, more detailed criterion, from INALI (2012), considers that a language has very high risk of disappearance when the total number of speakers is less than 100, the number of child speakers is less than 25 %, and the speakers are less than 30 % of the population in all localities; and a language is at high risk of disappearance when the total number of speakers is less than 1 000 but higher than 100, the number of child speakers is less than 25 %, and the number of speakers in just one locality is less than 30 %. The second criterion considers a language critically endangered when the number of speakers is less than 50, and endangered when the number of speakers is less than 250 (Loh & Harmon, 2014; Simons & Fennig, 2018). Both of these criteria are in line with the degrees of endangerment established by UNESCO (2010).

A linguistic variant has structural and lexical differences when compared with other variants in the same linguistic group. And those that speak a variant have a sociolinguistic identity that contrasts with the sociolinguistic identity of those that speak other variants within the same linguistic group (Diario Oficial de la Federación, 2008). Those differences could be sounds, words, meanings, and uses that result in speakers of one variation being unable to understand speakers of other variations. Variants are therefore often seen as equivalent to languages (INALI, 2012) and are considered as such in this paper.

RESULTS

Biological Species

Mexico harbors 10-12 % of the world’s biological diversity and is ranked as the fourth megadiverse country after Indonesia, Brazil and Colombia (Mittermeier & Mittermeier, 1992; Mittermeier et al., 1999; Toledo, Boege, & Carrera-Bassols, 2010; Sarukhán et al., 2017). So far, 118 030 (66.44 %) of the estimated 177 641 species of animals and vascular plants of Mexico have been described (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO], 2008; Sarukhán et al., 2017): 23 314 species of vascular plants, 564 mammals, 1 150 birds, 908 reptiles, 908 amphibians, 2 763 fishes (2 224 marine), 11 472 non-arthropod invertebrates, 11 185 non-insect arthropods, and 66 275 insects. These estimates include terrestrial, freshwater, and coastal marine species.

As in other parts of the world, tropical regions in Mexico contain more species than temperate areas; although there are certain groups that are particularly diverse in arid zones, such as cacti, of which at least 677 species are found in the country, 518 of them being endemic (Dávila et al., 2002; Villaseñor, 2016). The states of Oaxaca, Chiapas, Veracruz and Guerrero (all in the South/Southeast and close to Guatemala and Belize) and Michoacán are home to the bulk of the country’s biodiversity (see also Toledo et al., 2001). Mammal, reptile and amphibian species richness is much higher in Oaxaca, Chiapas, Veracruz and Tabasco (CONABIO, 2008) and although it varies among different groups, tropical humid regions appear to have fewer endemic species.
than arid and semiarid regions (CONABIO, 2016). Oaxaca alone is home to almost half of Mexico’s known species of vertebrates, 19% of the known invertebrates, and 40% of the known plants (Gonzalez-Perez, Briones-Salas, & Alfaro, 2004).

At least 127 species of Mexican flora and fauna (58% of them endemic) are known to have gone extinct through 2008 (Table 1). However, since most recorded extinctions have occurred on islands and in continental lagoons and rivers, and include only flowering plants and vertebrates, the actual number of extinctions (including other habitats and taxa) is probably much higher. There are today 1,213 Mexican species (many endemic) threatened with extinction (Diario Oficial de la Federación, 2010b; IUCN, 2018; Supplemental Material): 94 (73 endemic) species of mammals, 66 (24) birds, 97 reptiles, 219 (182) amphibians, 181 fishes, 8 mollusks, 98 other invertebrates, and 450 plants (including 12 conifers, 41 cycads, 133 cacti and 22 magnolias). Unsurprisingly—given the extent of habitat destruction and fragmentation in Oaxaca, Chiapas, Veracruz, Guerrero, Michoacán, and states adjacent to the Gulf of California, including its many islands and islets—threatened hotspots are located mostly in those regions.

Languages

Today, 25.7 million (21.5%) of Mexico’s inhabitants are indigenous peoples, and 7.4 million (6.5% of all Mexicans older than three years) speak an indigenous language (Instituto Nacional de Estadística y Geografía [INEGI], 2010, 2015); although in some states such as Chiapas, Oaxaca and Yucatán that percentage is nearly 30% (CONABIO, 2016). Indigenous land represents approximately 14.3% (or 28 million hectares) of the country’s total territory (Boege, 2008, 2009) and nearly half of the most important watershed headwaters are occupied by indigenous peoples. About a third of Mexico’s protected natural areas (at the federal level) have indigenous populations living within them, and approximately 70% of Mexico’s indigenous land is under some sort of priority for the conservation of its rich biological resources (Toledo et al., 2010). There are 64,172 named localities with indigenous people and a quarter of Mexico’s social properties are located within 4,786 ejidos (communal land, which in Mexico is land expropriated from owners of large tracts and redistributed for shared use as farmland, especially to poor populations, in accordance with the Agrarian Reform Act of 1917) and 1,258 agrarian communities in territories own by indigenous people (INEGI, 2015). The states of Oaxaca, Chiapas, Veracruz, Guerrero, Hidalgo, Estado de México, and Yucatán are home to 77% of the Mexico’s indigenous people, while the states of Coahuila, Colima and Zacatecas have the lowest indigenous populations.

Today, with 364 living languages, Mexico is the world’s fifth most linguistically diverse country after Papua New Guinea, Indonesia,

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Extinct Species</th>
<th>Endemic Species</th>
<th>States/Islands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>26</td>
<td>5</td>
<td>Hidalgo, Veracruz, Jalisco, Isla Guadalupe</td>
</tr>
<tr>
<td>Fish</td>
<td>38</td>
<td>20</td>
<td>Nuevo León, Coahuila, Jalisco, Durango, México, Veracruz</td>
</tr>
<tr>
<td>Amphibians</td>
<td>29</td>
<td>29</td>
<td>Oaxaca, Veracruz, Guerrero, Querétaro, Hidalgo, Durango</td>
</tr>
<tr>
<td>Birds</td>
<td>19</td>
<td>11</td>
<td>México, Sonora, Coahuila, Michoacán, Colima (Isla Benedicto), Baja California (Islas Todos los Santos), Isla Guadalupe, Isla Socorro</td>
</tr>
<tr>
<td>Mammals</td>
<td>15</td>
<td>9</td>
<td>Baja California (Islas Todos los Santos, Coronado, Turner, and San José), Nayarit (Archipiélago las Marias), Sonora (Isla San Pedro)</td>
</tr>
</tbody>
</table>

Table 1

Mexico’s recorded extinct species of fauna and flora (CONABIO, 2008; Sarukhán et al., 2017)

Nigeria and India (Diario Oficial de la Federación, 2008; Toledo et al., 2010; INALI, 2012). Mexico’s indigenous languages belong to 11 linguistic families and 68 linguistic groups (Diario Oficial de la Federación, 2008; INEGI, 2010; INALI, 2012). This cultural richness is, however, threatened.

Four linguistic groups comprise the largest numbers of speakers in Mexico – Náhuas (1,376,000 speakers), Maya (759,000), Mixteco and Zapoteco (> 400,000) – while 22 groups each have less than 1,000 speakers. Oaxaca, Puebla, Chiapas, Veracruz and Guerrero are the states with the highest linguistic diversity; densities of languages in Oaxaca, Veracruz and Guerrero are comparable to areas in Papua New Guinea, the Himalayas, Nigeria, and Cameroon (CONABIO, 2008). Ninety percent of the people who speak the Cochimí-Yuman family (Cucapá, Paipái, Kumiai, Ku’ahl and Kiliwa) live in Baja California and Baja California Sur, all of which are at high or very high risk of disappearance. Cochimí is not a “modern” Yuman language, but one that likely split off from a Proto-Yuman tongue long ago (Mixco, 1978).

The status of speakers among ethnic groups differs greatly throughout Mexico. There are groups in which only the elders speak the language (in Mexico), as is the case of the Ixcateco, Ayapaneco, Kiliwa, Paipái, Cucapá and Ku’ahl; and those for which adults speak the language, but children do not, such as Tlahuica, Mocho’, Tuzanteco, Teko, Awakateko, Oluteco, Ayapaneco, Texistepaqueño, Chocholteco, Kaqchikel, Ixil, and Ixil chajuleño (INALI, 2012). However, Kaqchikel and Ixil are languages probably represented today in Mexico by relatively recent immigration from Guatemala, where they remain strongly represented. At least 13 languages have gone extinct in Mexico: Pericú, Solteco, Naolan, Opata, Pochuteco, Cuitlatec, Pame (Southern), Tepecano, Tubar, Chiapaneco, Eudeve, Pochuteco and Cochimi. Of the 364 languages spoken today in Mexico, 64 are in very high risk of disappearance (less than 100 speakers survive) and 43 are in high risk of disappearance (less than 1,000 but more than 100 speakers survive (INALI, 2012) (Table 2, Fig. 1). Nine languages in Mexico are also considered by Simons and Fennig (2018) to be critically endangered (less than

Fig. 1. Mexico’s languages at very high risk of disappearance shown in red (from INALI, 2012; coloring denotes areas in which the language is spoken), and its most biologically diverse states bordered in green.
TABLE 2
Extinct, critically endangered, and endangered languages in Mexico

EXTINCT

<table>
<thead>
<tr>
<th>Language (family)</th>
<th>Number of Speakers</th>
<th>State</th>
<th>Locality (municipality: villages) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericú (2)</td>
<td>None</td>
<td>Baja California</td>
<td>Los Cabos region</td>
</tr>
<tr>
<td>Solteco (Oto-mangue) (3)</td>
<td>None</td>
<td>Oaxaca</td>
<td></td>
</tr>
<tr>
<td>Cuitlatec (4)</td>
<td>None</td>
<td>Guerrero</td>
<td>Balsas River</td>
</tr>
<tr>
<td>Naolán (unclassified) (5)</td>
<td>None</td>
<td>Tamaulipas</td>
<td>San Juan Naolán, near Tula</td>
</tr>
<tr>
<td>Pochuteco (6)</td>
<td>None</td>
<td>Oaxaca</td>
<td></td>
</tr>
<tr>
<td>Opatu (Uto-azteca) (7)</td>
<td>None</td>
<td>Sonora</td>
<td></td>
</tr>
<tr>
<td>Pame, sureño (Oto-mangue)</td>
<td>None</td>
<td>Estado de México</td>
<td>Arivechi, Bacanora, Naconí, Onavas, Sahuaripa, Suaqui. Tecoripa is the traditional area</td>
</tr>
<tr>
<td>Tepecano (Uto-azteca) (8)</td>
<td>None</td>
<td>Jalisco</td>
<td>Villa Guerrero: Azquelitán (earlier Atzquelitán), San Martin de Bolaños on Rio Bolaños</td>
</tr>
<tr>
<td>Tubar (Uto-azteca) (9)</td>
<td>None</td>
<td>Chihuahuan near de border with Sonora and Sinaloa</td>
<td></td>
</tr>
<tr>
<td>Chiapaneco (Oto-mangue)</td>
<td>None (10)</td>
<td>Chiapas</td>
<td>El Bosque, Las Margaritas, Ocosingo, Atenque and Sabanilla municipalities</td>
</tr>
<tr>
<td>Eudeve (11)</td>
<td>None</td>
<td>Sonora (12)</td>
<td></td>
</tr>
<tr>
<td>Pochuteco (Uto-azteca) (13)</td>
<td>None</td>
<td>Oaxaca</td>
<td></td>
</tr>
<tr>
<td>Cochimi (Cochimi-yumana)</td>
<td>None (15)</td>
<td>Baja California</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baja California Sur</td>
<td></td>
</tr>
</tbody>
</table>

CRITICALLY ENDANGERED (less than 50 speakers and no children –5 to 14 years of age– speak the language)

<table>
<thead>
<tr>
<th>Language (family)</th>
<th>Number of Speakers</th>
<th>State</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiliwa (Cochimi-yumana)</td>
<td>2 (16)*</td>
<td>Baja California</td>
<td>Ensenada: Arroyo de León (Ejido Kiliwas), Ejido San Francisco R. Serrano (Valle San Matías), Ensenada, Francisco Zarco (Guadalupe), Juntas Neji, La Zorra, Lázaro Cárdenas (Valle de la Trinidad), Licenciado Gustavo Díaz Ordaz, Parcela Número 19 (Familia Castro Ejido Nalita), Rancho las Pinzas</td>
</tr>
<tr>
<td>Awakateco (Maya)</td>
<td>3*</td>
<td>Campeche</td>
<td>Champotón: Maya Tecún I, Maya Tecún II, Santo Domingo Kesté</td>
</tr>
<tr>
<td>Tuzanteco (Maya)</td>
<td>5*</td>
<td>Chiapas</td>
<td>Tuzantán: Estación Tuzantán</td>
</tr>
<tr>
<td>Ayapaneco (Mixe-zoque)</td>
<td>8 (17)*</td>
<td>Tabasco</td>
<td>Jalapa de Méndez: Ayapa, El Carmen (La Ensenada), Vicente Guerrero Primera Sección</td>
</tr>
<tr>
<td>Ixil nebajeho (Maya)</td>
<td>12*</td>
<td>Quintana Roo</td>
<td>Othón P. Blanco: Maya Balam</td>
</tr>
<tr>
<td>Language (family)</td>
<td>Number of Speakers</td>
<td>State</td>
<td>Locality (municipality: villages)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Zapoteco de Mixtepec (Oto-mangue)</td>
<td>14 (18)*</td>
<td>Oaxaca</td>
<td>San Cristóbal Matlatzin: San Agustín Mixtepec</td>
</tr>
<tr>
<td>Ku'al (Chochimí-yumana)</td>
<td>20 (19)*</td>
<td>Baja California</td>
<td>Misión de Santa Catarina, Comunidad Indígena de Santa Catarina, El Aguaquito (Mat Chip) [Rancho Matchip], Rancho Escondido, Rancho Wikualpuk (El Ranchito), Ensenada</td>
</tr>
<tr>
<td>Ixcateco (Oto-mangue) (20)</td>
<td>21 (21)*</td>
<td>Oaxaca</td>
<td>Oaxaca de Juárez, Santa María Ixcatlán</td>
</tr>
<tr>
<td>Kaqchikel (Maya)</td>
<td>35*</td>
<td>Campeche</td>
<td>Campeche: Quetzal-Edzná I, Quetzal-Edzná II, Los Laureles. Champotón: Maya Tecún II, Santo Domingo Kesté</td>
</tr>
<tr>
<td>Zapoteco de San Felipe Tejalapám (Oto-</td>
<td>50 (22)*</td>
<td>Oaxaca</td>
<td>Los Paderones, San Felipe Tejalapám</td>
</tr>
<tr>
<td>mangue)</td>
<td></td>
<td></td>
<td>Quintana Roo. Othón P. Blanco: Kuchumatán, Maya Balam, San Isidro la Laguna</td>
</tr>
<tr>
<td>Ixil chajuleño (Maya)</td>
<td>52</td>
<td>Campeche</td>
<td>Campeche: Los Laureles, Quetzal-Edzná</td>
</tr>
<tr>
<td>Zapoteco de Asunción Tlacolulita (</td>
<td>53</td>
<td>Oaxaca</td>
<td>Asunción Tlacolulita: Asunción Tlacolulita, Primera Sección Norte</td>
</tr>
<tr>
<td>Oto-mangue)</td>
<td></td>
<td></td>
<td>Quintana Roo. Othón P. Blanco: Kuchumatán</td>
</tr>
<tr>
<td>Oluteco (Mixe-zoque)</td>
<td>60*</td>
<td>Veracruz</td>
<td>Oluta: Correa de Abajo, El Chorro, El Mirador, El Ángel Gabriel, Los Laureles, Oluta, Tenejapa</td>
</tr>
<tr>
<td>K’iche’ (occidental) (Maya)</td>
<td>65</td>
<td>Campeche</td>
<td>Champotón: Santo Domingo Kesté</td>
</tr>
<tr>
<td>K’iche’ (central) (Maya)</td>
<td>65</td>
<td>Campeche</td>
<td>Champotón: Santo Domingo Kesté</td>
</tr>
</tbody>
</table>

ENDANGERED (less than 250 speakers no children –5 to 14 years of age– speak the language)
<table>
<thead>
<tr>
<th>Language (family)</th>
<th>Number of Speakers</th>
<th>State</th>
<th>Locality (municipality: villages)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pápago (Pima alto) (Yuto-nahua)</td>
<td>94</td>
<td>Sonora</td>
<td>Altar: Altar, El Cubabi, El Cumariato. Caborca: El Soñic, Heroica Caborca, Juárez, La Escondida, Las Norias (De Romero), Puerto Lobos, San Francisco Pápago (San Francisco), San Pedro, Santa Eduwiges (La Cachora), SPR Mayobampo (Rancho Corraleno). General Plutarco Elías Calles: Ejido Luis Echeverria Álvarez, El Chamizal, El Desierto de Sonora, Quitovac, San Antonio, Santa Rosa (La Angostura), Sonoyta.</td>
</tr>
<tr>
<td>Kickapoo (Álgica)</td>
<td>105</td>
<td>Coahuila</td>
<td>Múquiz: Ciudad Melchor Múquiz, El Nacimiento de los Kikapúes (Nacimiento de la Tribu Kickapoo)</td>
</tr>
<tr>
<td>Mexicano de occidente (Yuto-nahua)</td>
<td>107</td>
<td>Jalisco</td>
<td>Cuautitlán de García Barragán: Ayotitlán, Cortapico, Cuautitlán de García Barragán, Cuzalapa, Chacala, Chiquihuitlán, El Chico, La Guaca, La Rosa, Los Encinos, Los Sauces, Los Terreros, Mojones, Paso Real, Plan de Méndez, Plan de San Antonio, Rancho Viejo, San Miguel, Santa Rosa, Tierras Blancas, Tierras Negras</td>
</tr>
<tr>
<td>Kuapá (Cucapá) (Cochimí-yumana)</td>
<td>119 (24)</td>
<td>Baja California</td>
<td>Baja California. El Mayor Cucapá, Pozas de Arvizu. Mexicalli: Campo Camerina (Colonía Terrenos Indios), Campo del Prado (Colonía el Mayor), Campo Flores, Campo Sonora (Colonía Terrenos Indios), Colonía la Puerta, Comunidad Indígena Cucapá el Mayor [Ejido el Mayor], Ejido Cucapá Mestizo, Ejido Doctor Alberto Motza (El Indiviso), Ejido Durango, Ejido México, Familia Regalado (Ejido Sonora 2 Campos Nuevos), La Casa de las Curvas (Colonía el Mayor), Mexicalli, Sainz Domínguez (Colonía el Mayor), San Felipe.</td>
</tr>
<tr>
<td>Mexican alto de occidente (Yuto-nahua)</td>
<td>127</td>
<td>Nayarit</td>
<td>Sonora. San Luis Río Colorado: Pozas de Arvizu (La Reserva).</td>
</tr>
<tr>
<td>Mocho‘ (Maya)</td>
<td>141*</td>
<td>Chiapas</td>
<td>Motozintla: Motozintla de Mendoza.</td>
</tr>
<tr>
<td>Language (family)</td>
<td>Number of Speakers</td>
<td>State</td>
<td>Locality (municipality: villages)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Paipai (Cochimí-yumana)</td>
<td>162*</td>
<td>Baja California</td>
<td>- Ensenada: Arroyo de León, Ejido Colón, Camahuete, Cañada de la Sierra, snacks, Guayabo. - Ensenada: Ejido de las Palmas, El Álamo, El Chiquito, El Huarco, El Matillo, El Manantial, El Rodeo, Misión, Pueblo de la Imagen.</td>
</tr>
<tr>
<td>Zapoteco de la Sierra sur, noroeste bajo (Oto-mangue)</td>
<td>164*</td>
<td>Oaxaca</td>
<td>- Urbina: San José, Santa María, Villa de las Rosas.</td>
</tr>
<tr>
<td>Chocholteco del este (Oto-mangue)</td>
<td>190</td>
<td>Oaxaca</td>
<td>- San Juan Bautista: San Juan Bautista, San José, Santa María.</td>
</tr>
<tr>
<td>Chocholteco del sur (Oto-mangue)</td>
<td>200</td>
<td>Oaxaca</td>
<td>- San Miguel Nativitas: San Miguel, Santa María, Villa de las Rosas.</td>
</tr>
<tr>
<td>Zapoteca de la Sierra sur, noroeste bajo (Oto-mangue)</td>
<td>164*</td>
<td>Oaxaca</td>
<td>- Zapoteca de la Sierra sur, noroeste bajo (Oto-mangue)</td>
</tr>
<tr>
<td>Chichimeco del este (Oto-mangue)</td>
<td>180</td>
<td>Oaxaca</td>
<td>- Chichimeco del este (Oto-mangue)</td>
</tr>
<tr>
<td>Chichimeco del sur (Oto-mangue)</td>
<td>200</td>
<td>Oaxaca</td>
<td>- Chichimeco del sur (Oto-mangue)</td>
</tr>
<tr>
<td>Language (family)</td>
<td>Number of Speakers</td>
<td>State</td>
<td>Locality (municipality: villages) (1)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Kumiai (Cochimi-yumana)</td>
<td>221 (27)</td>
<td>Baja California (28)</td>
<td>Ensenada: El Porvenir (Guadalupe), Ensenada, Francisco Zarco (Guadalupe), La Huerta, La Misión, Rancho Dinuva, Rancho Plazola, Real del Castillo Nuevo (Ojos Negros), San Antonio Nucua (Cañada de los Encinos), San Salvador de Gálvez. Playas del Rosarito: Comunidad Indígena San José de la Zorra (San José de la Zorra) [San José la Zorra], La Zorra, Primo Tapia. Tecate: Colonia Luis Echeverría Álvarez (El Hongo), Ejido Guadalupe 2 (El Gato), Ejido Nueva Colonia Hindú, El Álamo, El Testerazo, El Venado, Encino Solo, Escuela Mescuich [Mescuich], Familia López Gaspar, Hacienda Santa Verónica, La Ciénega, Rancho Cañada Verde, Rancho Jucuín, Rancho las Auras, Rancho las Priscilas, Rancho Limón, Rancho Nejí Sección C [Junta de Nejí], Rancho Puerto el Roble, Santa Elena, Tecate, Valle de las Palmas.</td>
</tr>
<tr>
<td>Chontal de Oaxaca bajo (Chontal de Oaxaca)</td>
<td>223</td>
<td>Oaxaca</td>
<td>Santa María Ecatepec: La Reforma, San Juan Acaltepec, Santo Domingo Chontecomatlán, Santo Tomás Teipan.</td>
</tr>
<tr>
<td>Mixteco de San Miguel Piedras (Oto-mangue)</td>
<td>243*</td>
<td>Oaxaca</td>
<td>San Miguel Piedras: Chidoc (Chidoco de Juárez), Colorado, El Fresno, El Potrero, Guadalupe Victoria, Río Minas (Río Minas Piedras), San Miguel Piedras</td>
</tr>
<tr>
<td>Zapoteco de San Bartolo Yautep (Oto-mangue)</td>
<td>246</td>
<td>Oaxaca</td>
<td>San Bartolo Yautep: Joaquin López Mariano (Rancho), Puerto San Bartolo, San Bartolo Yautep.</td>
</tr>
</tbody>
</table>

Localities are from Diario Oficial de Federación (2008), status and notes are mainly from INALI (2012), Hammarström et al. (2018) and Simons & Fennig (2018). Critically endangered (< 50 speakers survive) and endangered (< 250 speakers survive) languages as in Simons and Fennig (2018); those denoted by * are in very high risk of disappearance (< 100 speakers survive) and high risk of disappearance (< 1 000 but > 100 speakers survive) following INALI (2012).
1. Localities included are those with historic settlements.
2. Also known as edúes y coras.
3. Related to Chatino and Zapoteco languages.
4. Last speaker died in the 1960s.
5. Extinct ca. 1950.
7. Last speakers reportedly died around 1930, but the 1990 census lists 12 speakers.
8. Formerly spoken by a small group of people. The last speaker was born in 1895 (Holt 2001) and no remaining speakers are known after 1972.
9. As many as 100 in 1970; see also Lionnet (1978).
10. Ethnic population is 32.
11. Also known as heve and dohema; extinct since about 1940; see also Lionnet (1986).
12. In her essay “El noroeste: Sonora” (http://www.fundacionunam.org.mx/humanidades/eudeves-una-etnia-extinta/), historian Isabel Verdugo de Juárez locates the territory occupied by Eudeves as: “In the north they were found along the mid-section of the San Miguel River (Horcasitas River) in Saracachi, Cucurpe o Opodepe. In the south they were found at the springs along the Matepe River, the banks of Moctezuma River and part of Nezoma or Yaqui Rivers. This area encompassed the historical sites of Batuco, Tepupa, Bacanora, Soyopa and Tónachi.”
14. From the first contact with Europeans 300 years ago, the Cochimíes have occupied the central part of the Baja California peninsula and the state of Baja California Sur. Although there was some minor dialect variation over the vast area where Cochimí was spoken, they were mutually intelligible (T. Bowen, pers. comm.). Originally, there were no large settlements and they were basically nomads. The guamas or sorcerers had an important position in the original culture; there were no writing or formal artistic expressions. They were gatherers and fishers, who did not practice agriculture nor have livestock.
15. Ethnic population is 150; this may include Kumiai in La Huerta who call themselves Cochimí; old Cochimí is extinct (Simons & Fennig 2018).
16. A total of 15 Kiliwa people survived in 2018 and the number of speakers is given as 29 (INALI 2012); however, in February 2018 one of the last three speakers died in Ejido Tribu Kiliwas, Valle de la Trinidad, near Ensenada.
18. It has been reported that in 2003 there were only two native speakers (the youngest then 72 years old) and three semi-speakers; the community apparently agreed to stop speaking Zapotec in 1965 (Beam de Azcona, 2004).
19. A total of 166 elder speakers was also reported (INALI 2010).
20. Reported as Xuani-Ixcateca by Molina Cruz (2010), who described efforts to save this language using video (see also https://www.youtube.com/watch?v=rN2M-Rb7LM0).
21. A total of population of nine and only a few elder speakers (in 2009) were reported (Simons & Fennig, 2018).
22. A total of 30 speakers, all over the age of 70, were reported in 1998 (Simons & Fennig, 2018).
23. The Kickapoo arrived in Mexico in the nineteenth century when, after the Anglo-Saxon invasion of their territory, they asked the Mexican government for a place to live; in exchange the government asked them to defend Mexican residents against the frequent attacks from the Comanche. Since then, the Kickapoo of Mexico have been known in the United States as the “Texas gang.”
25. Caccavari Garza (2014) reported less than 50.
26. According to Caccavari Garza (2014) most people are in Comunidad Indígena de Santa Catarina, but they are also present in San Isidoro, Valle de la Trinidad and Ejido Héroes de la Independencia.
27. Caccavari Garza (2014) reported less than 50.

50 speakers survive), and 29 endangered (less than 250 speakers survive). The ones with the highest risk of going extinct in the immediate future are: Kiliwa (2 speakers survive), Awakateco (3 speakers), Tuzanteco (5 speakers), Ayapaneco (8 speakers), Ayapaneco (8 speakers), Zapoteco de Mixtepec (14 speakers), Ku’al (20 speakers), Ixcatéco (21 speakers), Kaqchikel (35 speakers), Zapoteco de San Felipe Tejalapam (50 speakers), Ixil chajuleno (52 speakers), and Zapoteco de Asunción Tlacolulita (53 speakers). Mexico’s 56 extinct and endangered languages occur in 16 states, most (77%) in Oaxaca (16), Baja California
(7), Chiapas (6), Campeche (6), Sonora (4) and Quintana Roo (4) (Table 2, Table 3).

As a stark reminder, one language and one species, both located in Baja California, will probably go extinct within the next very few years. With only two speakers alive in late 2018, the Kiliwa is Mexico’s most endangered language and is condemned to extinction (INALI, 2012; Caccavari Garza, 2014). And, with a population of fewer than two dozen individuals in 2018 (Comité International para la Recuperación de la Vaquita [CIRVA], 2019), probably even fewer today, the vaquita porpoise (*Phocoena sinus*), Mexico’s only endemic and the world’s most endangered marine mammal, is being driven to extinction by illegal fishing for the endangered and endemic totoaba (*Totoaba macdonaldi*) (Vidal, 1995; Brusca, Álvarez-Borrego, Hastings, & Findley, 2017; Thomas et al., 2017; Rojas-Bracho et al., 2018).

![Table 3](image)

Table 3

<table>
<thead>
<tr>
<th>State</th>
<th>Number of extinct and endangered languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oaxaca</td>
<td>16</td>
</tr>
<tr>
<td>Baja California</td>
<td>7</td>
</tr>
<tr>
<td>Chiapas</td>
<td>6</td>
</tr>
<tr>
<td>Campeche</td>
<td>6</td>
</tr>
<tr>
<td>Sonora</td>
<td>4</td>
</tr>
<tr>
<td>Quintana Roo</td>
<td>4</td>
</tr>
<tr>
<td>Chiuhuahua</td>
<td>3</td>
</tr>
<tr>
<td>Jalisco</td>
<td>2</td>
</tr>
<tr>
<td>Tabasco</td>
<td>1</td>
</tr>
<tr>
<td>Veracruz</td>
<td>1</td>
</tr>
<tr>
<td>Guerrero</td>
<td>1</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>1</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>1</td>
</tr>
<tr>
<td>Mexico State</td>
<td>1</td>
</tr>
<tr>
<td>Coahuila</td>
<td>1</td>
</tr>
<tr>
<td>Nayarit</td>
<td>1</td>
</tr>
</tbody>
</table>

DISCUSSION

Places with high species diversity, especially tropical forests, tend to have high linguistic diversity, and areas with low species diversity, such as tundra and deserts, have low linguistic diversity (Sutherland, 2003; Loh & Harmon, 2005). For instance, Papua New Guinea covers less than 1 % of the world’s land area but is home to the world’s third largest tropical rainforest (after the Amazon and the Congo) (Bryan, Shearman, Ash, & Kirkpatrick, 2010), and is also home to 6-8 % of the Earth’s animal and plant species (two thirds of them endemic) and 12 % of the world’s living languages (Papua New Guinea’s Fifth National Report to the Convention on Biological Diversity, 2014; Simons & Fennig, 2018).

Indigenous people are custodians and landowners of much of the biodiversity worldwide. The world’s 370 million indigenous people make up less than 5 % of the total human population, yet they manage or hold tenure over 25 % of the world’s land surface that supports about 80 % of the global biodiversity (Raygorodetsky, 2018).

There are increasing numbers of examples of non-industrial people living in harmony with their natural environment, such as rural communities in Hawaii (McGregor, 1999); the Kayapo Indians of Middle Xingu Valley in Brazil (Posey, 1999); the Dai, an indigenous ethnic group in Southwest China (Shenghi, 1999); and the Sápara of Ecuador (Raygorodetsky, 2018). Numerous studies have proven how traditional ecological knowledge and practices have effectively served to protect and maintain natural environments (e.g., Posey, 1999; Berkes, 2001; Cunningham, 2001; Wiersum, 2004; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services [IPBES], 2018). In addition, biocultural conservation can help secure the rights of indigenous and local people and help maintain a focus on social justice.

The current rate of extinction of languages worldwide, and loss of knowledge they contain, has no parallel in human history (Harisson, 2007). Language loss in some areas, such as the Americas, has reached 60 % over the last 35 years (Harmon & Loh, 2010). Indeed, the most rapid losses in linguistic diversity have occurred in this region, where 60 % of languages are threatened or have gone extinct since
1970. And this is not limited to developing countries. Policies in the United States, particularly between the 1870s and 1930s, greatly suppressed Native American languages and culture. It was only after years of activism by indigenous leaders that the U.S. Native American Languages Act was passed in 1990, which allowed for the preservation and protection of indigenous languages.

Languages can go extinct either because the entire population of speakers dies out, or because the speakers shift to a different language and forget their mother tongue due to the loss of intergenerational transmission. Much of the decline in linguistic diversity is a result of language shift away from small indigenous languages toward national or regional languages (Loh & Harmon, 2014). Along with the disappearance of languages, most of the rich traditional knowledge of these indigenous cultures is largely lost forever, including knowledge of the natural history of the world in which the language resided.

Languages are a critical measure of the cultural diversity of nations, while species richness is a measure of their biological diversity. Mexico offers an important case on the challenges to conserve both. With at least 118 species of economically important plants totally or partially domesticated by indigenous pre-Hispanic farmers, Mexico has been a global center of plant domestication. More than 15 % of edible vegetable species consumed in the world originated in Mexico (CONABIO, 2008; Perales & Aguirre, 2008; Bellón et al., 2009; Sarukhán et al., 2017). In addition, between 3 000-4 000 medicinal plant species are regularly used by Mexicans, and indigenous people in Mexico use 5 000-7 000 plant species in various cultural activities (Boege, 2008). It has been suggested that almost every species of plant and animal, type of soil, landscape, and mountain in Mexico has its match in a linguistic expression, knowledge category, practical use, mythical or religious meaning, or a known individual or collective experience (Toledo et al., 2001a, 2001b).

Mexico’s early cultures relied heavily on natural resources, including the harvesting of coastal and estuarine resources in the Holocene. In the Baja California-Gulf of California region this included fishing and intensive hunting of dolphins and sea turtles beginning at least 10000 years ago (Bowen, 1976, 2000, 2006, 2009; Felger & Moser, 1987; Felger, Nichols, & Seminoff, 2005; Fujita, 2006; Marlett, 2014). By around the year AD 1000, four important centers of indigenous socio-economic and cultural concentration surged in this region, which reflected changing patterns of harvesting of marine resources. First, during the early 16th and 17th centuries, the Pericú, who lived along the deserts of Los Cabos region in the South of the peninsula, were hunters and shell gatherers (concheros), and disappeared (together with their language, its phylogenetic classification remaining unknown) in the second half of 18th century (Fujita, 2006). The exploitation of marine mammals, the associated stone tools, and the construction of enormous shell mounds by the Pericú display striking similarities to the Chumash people of the Channel Islands in Southern California in the United States (Beer, Gonzalez, Huddart, Rosales-Lopez, & Lamb, 2008). Second, the Guaicuras and the Cochimí, the latter inhabiting the center and North of the Baja California peninsula, were also shell gatherers and fishers. Third, the Seris on the ("mainland") coastal Sonoran Desert were (and still are) fishers and gatherers. And fourth, the Yumas, Pimas Altos and Papagos in North-Central Sonora and the tip of the peninsula were desert gatherers-farmers (Nolasco, 1982). The central desert area of the Baja California peninsula had the least linguistic diversity (and probably the lowest biological diversity; T. Bowen, personal communication).

Loss of biocultural diversity in Mexico (and the Americas in general) began as soon as Europeans arrived. Although estimates of the Native American population size of Mexico upon first arrival of Europeans in 1519 vary greatly (from less than 3 million to over 52 million), most researchers put it at around 20 million (Koch, Brierley, Maslin, & Lewis,
At the time, large areas of land were under cultivation with maize, cacao, and fruit orchards (Whitmore & Turner, 1992). This indigenous population quickly began to collapse from warfare, slavery, and the introduction of pathogens unknown in the Americas (e.g., influenza, smallpox, bubonic plague). The most devastating epidemic in Mexico occurred in 1520, when a single smallpox outbreak killed an estimated 30 to 50% of the indigenous population (Cook & Borah, 1960; Dobyns, 1993; McCaa, 1995). Following the first comprehensive census in 1568, the population of central Mexico had already declined to 2.7 million (Sanders, Pasons, & Santley, 1979), which corresponds to an approximate decline of 87% within the first 50 years of European arrival (based on a contact population of 20 million) (Whitmore & Turner, 1992). A rapid population collapse of up to 90% is plausible for the most populous parts of the country (Koch et al., 2019). One can only speculate how many indigenous languages were lost or put on a path toward extinction during this period. In Northern Mexico many groups of hunters and gatherers who spoke unknown languages perished because of the extermination campaigns launched by Spanish conquerors (Borah & Cook, 1963).

Today, there is strong geographical overlap between the states that harbor the bulk of Mexico’s biological and linguistic diversity, with Oaxaca, Puebla, Chiapas, Veracruz, Guerrero and Michoacán standing out. Furthermore, Mexico’s biodiversity hotspots closely mirror its language hotspots: areas with the highest number of endangered plant and animal species overlap with those where the endangerment of languages is greatest. Most of Mexico’s dry forests, tropical rain forests, and temperate rain forests, which are home to high levels of biological and linguistic diversity, belong to indigenous communities, and almost a third of the country’s federally protected areas are within indigenous territories (Sarukhán et al., 2017). It has been estimated that nearly 90% of Mexico’s indigenous population live in forested areas, while the rest live in arid and semi-arid regions with shrub or grasslands (Toledo et al., 2001a, 2001b).

Oaxaca is a good example of how the geography of languages and biodiversity overlap and have evolved together. Its complex geological history produced an elaborate topography and highly diverse range of ecosystems, from tropical coastal areas to temperate pine-oak forests, thorn scrub and cloud forests, which in turn favored adaptive radiation, speciation, and a high diversity of flora and fauna (Ordoñez, 2004). At least 8,431 species of plants (nearly 40% of Mexico’s known flora) and 4,542 animal species (half of the country’s vertebrates and 19% of its known invertebrates) are present in Oaxaca (García-Mendoza, Ordoñez, & Briones-Salas, 2004; CONABIO, 2008). For more than 10,000 years, its indigenous peoples have dispersed and evolved within the state’s diverse ecosystems, and today 157 languages (43% of Mexico’s 364 languages) are spoken in more than 4,000 indigenous communities (de Ávila Blomberg, 2004).

The most insidious threats to Mexico’s biodiversity are habitat destruction and fragmentation (mostly by deforestation for agriculture and livestock), overexploitation, invasive species, and climate change. The country has already lost about 70% of its forest cover, mainly the tropical forests of the Southeast (Sarukhán et al., 2017). Prieto-Amparán et al. (2019) analyzed non-tropical land use in Mexico and found the area of primary forest reduced from 55.8% in 1990 to 37.7% in 2017 in their study region (which included temperate primary and secondary forest, human settlements, unvegetated areas, and water bodies). In just one year (2016), 253,000 hectares of Mexico’s forests disappeared (Global Forest Watch, 2018). The effects of climate change will exacerbate all those threats (Peterson, Tian, Martínez-Meyer, Soberón, & Sánchez-Cordero, 2005).

The largest areas of forest and wildlands in Mexico are usually communal lands (Stoleson et al., 2005), and at least 70% of its forested areas are held by ejidos (Segura, 2000; Molnar & White, 2001). However, this is rapidly
changing as ejidos sell their land to private landowners (Stoleson et al., 2005), typically to non-campesinos, and the cultural erosion and loss of traditional knowledge that ensues encourages loss of biodiversity (Laird, 2002).

Languages disappear for a variety of reasons: all speakers may die; speakers may succumb to pressures to speak a different language and forget their mother tongue; speakers may choose to stop speaking their native tongue because of interests in participating in national education, finding jobs that pay salaries and could come with various benefits, or marry into a family with speakers from another language. The threat to Mexico’s languages includes a combination of factors such as the reduced number of speakers, their geographical dispersion, predominance of adult speakers, and trends for abandoning transmission of languages to new generations (INALI, 2012). All of this is compounded by a lack of interest or even neglect by authorities, which has led to exclusion of indigenous languages from public and institutional spaces, mass media communications such as radio and television, and their diminishing use among communities and families. Some indigenous people seem to have accepted that their languages will disappear, and they will soon be able to communicate only in Spanish (INALI, 2012), while others desire to reverse the extinction trend. And many more simply do not know what to do to save their (Mexico’s) cultural heritage.

Traditional peoples have accumulated vast amounts of ecological knowledge, and that knowledge is embodied in their languages. Thus, as languages go extinct, associated traditional ecological knowledge is also lost (Oviedo et al., 2000). This happens because, in most traditional cultures, knowledge is not recorded in writing but is passed on orally to other groups or new generations. In such cases, the loss of local languages means the loss of the traditional means of knowledge transmission.

The science of biocultural diversity is in its infancy. Although we do not yet fully understand it, there is evidence of ancient and profound connections between biological and linguistic diversity. When species go extinct entire biological communities and ecosystems can be disrupted or permanently altered. Regardless of their economic, scientific and aesthetic value to humans, plant and animal species have a value of their own because of their unique evolutionary history, genomic diversity, and, ultimately, because of their very existence. When we allow languages to disappear, we squander the culture of humanity, the millennial knowledge of the natural world, and a part of our own past. The IPBES released its definitive new global synthesis of “Assessing nature’s contributions to people” (Díaz et al., 2018). It is the first such report since the landmark MEA (2005) was published, and the first ever that is fully intergovernmental. It is also the first assessment to systematically include indigenous and local knowledge at a global scale.

For decades, scientists and conservationists have advocated for the establishment of protected areas to conserve ecosystems and biological diversity (Vidal, López-García, & Rendón-Salinas, 2014). But, as has been advocated for more than two decades, the world’s biodiversity will only be effectively preserved by also protecting the diversity of human cultures, and vice versa (Oviedo et al., 2000; Maffi, 2001; Toledo, 2001b). Protecting areas that are implemented under participatory and co-management schemes is the most effective strategy for conserving biodiversity while improving the economic and social conditions of local communities. Conservation area networks comprising priority areas should serve as the baseline for identifying the most suitable strategies depending on the areas’ socio-economic contexts and specific characteristics.

We have shown that Mexico’s biocultural diversity is at crossroads. Federal, state and municipal governments, businesses, conservation organizations, philanthropists, and multilateral agencies that care about biodiversity need to realize that their resources and efforts will only be effective in the long-term if they simultaneously support protection of indigenous cultures and traditional knowledge. Given
that the regions harboring Mexico’s highest biocultural diversity are considered strategic for the country’s water, environmental and food security, as well as to ensuring the rights of indigenous peoples, it has recently been proposed that they should be an important component of the 2019-2024 national development plan (Luque & Ortiz Espejel, 2019). We hope this policy initiative results in concrete action to protect Mexico’s unique cultural and natural heritage. Biological and cultural diversity are two sides of the same coin. Since endangered languages and endangered species strongly overlap geographically in Mexico, it makes sense to combine efforts to protect both. But time is of the essence. All constituents need to urgently reinforce efforts and significantly augment investments if we are to rescue and preserve the country’s unique biocultural diversity and traditional knowledge for the benefit of present and future generations.

Ethical statement: authors declare that they all agree with this publication and made significant contributions; that there is no conflict of interest of any kind; and that we followed all pertinent ethical and legal procedures and requirements. All financial sources are fully and clearly stated in the acknowledgements section. A signed document has been filed in the journal archives.

ACKNOWLEDGMENTS

We are very grateful to linguists Stephen Marlett and Mauricio J. Mixco, to anthropologist Cathy Moser Marlett, and to ethnoecologist Víctor M. Toledo, for their critical reviews of our paper.

REFERENCES

La diversidad biocultural de México en peligro. Introducción: Lugares con diversidad de especies alta contienen diversidad lingüística alta, mientras que áreas con diversidad de especies baja tienden a contener diversidad lingüística baja. Objetivo: Caracterizar las relaciones entre la diversidad biológica y la diversidad cultural, una correlación que ha sido examinada a escala global pero que en este trabajo es comprobada por primera vez para México. Métodos: Recopilamos bases de datos extensas sobre las especies y las lenguas en peligro de extinción, y revisamos la literatura disponible sobre la diversidad biocultural de México, con énfasis en las especies y lenguas en peligro y en peligro crítico de extinción. Resultados: Con 364 lenguas vivas, México es el quinto país más diverso lingüísticamente hablando, pero 64 de estas lenguas están en muy alto riesgo de desaparecer y 13 ya desaparecieron. México también es el cuarto país más biodiversor, pero 1 213 especies de su flora y fauna están amenazadas de extinción y al menos 127 desaparecieron recientemente. Conclusiones: Los pueblos indígenas son custodios de mucha de la diversidad biocultural del mundo. A medida que el mundo se vuelve menos diverso lingüísticamente y culturalmente, también se vuelve menos diverso biológicamente. La diversidad biológica y lingüística de México muestran una marcada superposición geográfica, y los estados de Oaxaca, Chiapas, Veracruz, Guerrero y Michoacán son los que más especies y lenguas albergan. De manera similar, los sitios en donde la biodiversidad está en mayor peligro también corresponden con los sitios en donde las lenguas lo están, y las áreas con el mayor número de especies en peligro traslapan con las áreas en donde las lenguas están en mayor peligro.

Palabras clave: idiomas, lingüística, conocimiento tradicional, pueblos indígenas, biodiversidad, México, especies en peligro de extinción, extinción.

RESUMEN

La diversidad biocultural de México en peligro. Introducción: Lugares con diversidad de especies alta contienen diversidad lingüística alta, mientras que áreas con diversidad de especies baja tienden a contener diversidad lingüística baja. Objetivo: Caracterizar las relaciones entre la diversidad biológica y la diversidad cultural, una correlación que ha sido examinada a escala global pero que en este trabajo es comprobada por primera vez para México. Métodos: Recopilamos bases de datos extensas sobre las especies y las lenguas en peligro de extinción, y revisamos la literatura disponible sobre la diversidad biocultural de México, con énfasis en las especies y lenguas en peligro y en peligro crítico de extinción. Resultados: Con 364 lenguas vivas, México es el quinto país más diverso lingüísticamente hablando, pero 64 de estas lenguas están en muy alto riesgo de desaparecer y 13 ya desaparecieron. México también es el cuarto país más biodiversor, pero 1 213 especies de su flora y fauna están amenazadas de extinción y al menos 127 desaparecieron recientemente. Conclusiones: Los pueblos indígenas son custodios de mucha de la diversidad biocultural del mundo. A medida que el mundo se vuelve menos diverso lingüísticamente y culturalmente, también se vuelve menos diverso biológicamente. La diversidad biológica y lingüística de México muestran una marcada superposición geográfica, y los estados de Oaxaca, Chiapas, Veracruz, Guerrero y Michoacán son los que más especies y lenguas albergan. De manera similar, los sitios en donde la biodiversidad está en mayor peligro también corresponden con los sitios en donde las lenguas lo están, y las áreas con el mayor número de especies en peligro traslapan con las áreas en donde las lenguas están en mayor peligro.

Palabras clave: idiomas, lingüística, conocimiento tradicional, pueblos indígenas, biodiversidad, México, especies en peligro de extinción, extinción.

Northern Mexico (pp. 52-86). New York, NY: Oxford University Press.

SUPPLEMENTAL MATERIAL

Common and scientific names of endemic and non-endemic critically endangered and endangered species from Mexico (Diario Oficial de la Federación 2010)

FUNGI

Tricholosporum subporphyrophyllum, non-endemic
Tricholosporum tropicalis, non-endemic
Conocybe siligineoides, non-endemic
Hypholoma naematoliformis, non-endemic
Psilocybe heimii, non-endemic
Psilocybe pleurocystidiosa, non-endemic
Psilocybe singeri, non-endemic
Psilocybe uxpanapensis, non-endemic
Psilocybe verae-cruccis, non-endemic
Psilocybe weldenii, non-endemic

PLANTS

flecha de agua, *Sagittaria intermedia*, non-endemic
Tauschia allioides, non-endemic
camedor despeinado, *Chamaedorea glaucifolia*, endemic
camedor metálico, *Chamaedorea metallicia*, endemic
camedor guayita, *Chamaedorea tenella*, endemic
camedor guonay, *Chamaedorea tuerckheimii*, non-endemic
falso camedor, *Synechanthus fibrosus*, non-endemic
maguey de la luna, *Agave lurida*, endemic
maguey de Nizanda, *Agave nizandensis*, endemic
maguey victoriae-reginae, endemic
Hymenocallis concinna, endemic
Hymenocallis durangoensis, endemic
Petronymphe decorra, endemic
soyate de Purpus, *Beaucarnea purpusii*, endemic
encyclia de Kienast, *Encyclia kienastii*, endemic
galeottia grande, *Galeottia grandiflora*, non-endemic
laelia de Muertos, lirios, *Laelia anceps dawsonii*, endemic
lycaste pelosa, *Lycaste lassioglossa*, non-endemic
lycaste monjita, *Lycaste skinneri*, non-endemic
Mexipedium xerophyticum, endemic
mormodes sanguineo, *Mormodes sanguineoclaustra*, endemic
mormodes de Soto, *Mormodes sotoana*, non-endemic
mormodes fimbriado, *Mormodes uncia*, endemic
tanal de bigotes, *Phragmipedium exstaminodium*, non-endemic
odontoglossum de mayo, *Rhynchostele majalis*, non-endemic
Rhynchostele uroskinneri, non-endemic
odontoglossum grande, *Rossioglossum grande*, non-endemic
odontoglossum de Williams, *Rossioglossum williamsianum*, non-endemic
trichopilia amarilla, *Trichopilia galeottiana*, non-endemic
girasol, *Hazardia orcuttii*
Perymenium wilburorum, non-endemic
Villasenoria orcuttii, non-endemic
cactus junco floricuerno, *Aporocactus flagelliformis*, endemic
biznaga peyotillo, *Ariocarpus fissuratus bravoanus*, endemic
Ariocarpus scaphirostris, endemic
biznaga algodoncillo de estrella, cacto estrella, *Astrophytum asterias*, endemic
biznaga partida delgada, Coryphantha gracilis, endemic
biznaga partida amacollada, Coryphantha werdermannii, endemic
Digitostigma caput-medusae, endemic
biznaga tonel dorada, Echinocactus grusonii, endemic
órgano pequeño de Jaraguey, Echinocereus ferreirianus lindsayi, endemic
órgano pequeño de Querétaro, Echinocereus schmollii, endemic
Echinomastus erectocentrus acunensis, non-endemic
Lophophora diffusa viridiscens, endemic
biznaga de la Reja, Mammillaria carmenae, endemic
tezontle, Mammillaria crinita leucanth, endemic
biznaga pol tsakam, Mammillaria gaumeri, endemic
biznaga de San Ángel, Mammillaria haageana san-angelensis, endemic
biznaga bola de hilo, Mammillaria herrerae, endemic
biznaga de Lau, Mammillaria laui dasyacantha, endemic
biznaga de La Cañada, Mammillaria mathilda, endemic
Mammillaria sanchez-mejoradae, endemic
Melocactus curvispinus curvispinus, non-endemic
Pterocereus gaumeri, endemic
turbinita de Querétaro, Turbinicarpus pseudomacrochele, endemic
biznaga cono invertido de Gielsdorf, Turbinicarpus gielsdorfianus, endemic
Turbinicarpus jauernigii, endemic
turbinita de Querétaro, Turbinicarpus pseudomacrochele, endemic
uñita, Turbinicarpus schmiedickeanus andersonii, endemic
uñita, Turbinicarpus schmiedickeanus gracilis, endemic
Turbinicarpus schmiedickeanus rioverdensis, endemic
Zinowiewia concinna, non-endemic
Cyathea costaricensis, non-endemic
Nephelea mexicana, non-endemic
dirigido, Ceratozamia alvarezii, endemic
mazacopa (Zoque), Ceratozamia chimalapensis, endemic
dirigido (Veracruz), Ceratozamia decumbens, endemic
Ceratozamia kuesteriana, endemic
Ceratozamia latifolia, endemic
Ceratozamia matudae, endemic
dirigido, Ceratozamia miqueliana, endemic
amendedaui (Zoque), Ceratozamia mirandae, endemic
carrete (Oaxaca), Ceratozamia mixeorum, endemic
tepetaja (Nahuatl, Veracruz), Ceratozamia morettii tepetaja, endemic
Ceratozamia norstogii, endemic
dirigido, palma espinosa, amendu, espadañ (Chiapas), Ceratozamia vovidesii amenduau, endemic
Ceratozamia whitelockiana, endemic
Ceratozamia zaragozae, endemic
Ceratozamia zoquorum, endemic
chamal (Nuevo León, Tamaulipas), Dioon angustifolium, endemic
palma (Oaxaca), Dioon argenteum, endemic
carrete (Oaxaca), Dioon califanoi, endemic
palma real (Oaxaca), Dioon caputoi, endemic
chamal (Nuevo León), palma de Teresita (Tamaulipas), palma de dolores (San Luis Potosi), palma navaja (Querétaro), quiotamal, tiotamal (Veracruz), Dioon edule, endemic
Marisol, plumilla (Oaxaca), Dioon holmgrenii, endemic
Espadaña, nimalari (Chiapas), Dioon merolae, endemic
palma real (Oaxaca), Dioon purpussii, endemic
tush-kju (Mazateco), Dioon rzedowskii, endemic
palma de la Virgen (Sonora, Sinaloa), peyote (Sonora), Dioon sonorensense, endemic
palma de chicalite, palma de Dolores, chicalitos, coyolillo, coyolito de cerro (Oaxaca), Dioon spinulosum,
endémica

Zamia cremnophila, endémica
chamalillo (Querétaro, San Luis Potosí), Zamia fischeri, endémica
palma bola (Veracruz), Zamia furfuracea, endémica
palmita (Veracruz), Zamia inermis, endémica
Zamia katzeriana, endémica
Zamia lacandona, endémica
Zamia purpurea, endémica
Zamia soconuscensis, endémica
Zamia spartea, endémica
amigo del maíz (Veracruz), Zamia vazquezii, endémica
Dicksonia regalis, no endémico
Dicksonia schiedei, no endémico
Sideroxylon cartilagineum, no endémico
Diospyros riojae, no endémico
zapote prieto, Diospyros xolocotzii, endémico
Fouquieria ochoterenae, endémico
Fouquieria purpussii, endémico
Dalbergia congestiflora, no endémico
Dalbergia granadillo, no endémico
Ormosia isthmensis, no endémico
Ormosia macrocalyx, no endémico
Platymiscium lasiocarpum, no endémico
Vatairea lundellii, no endémico
guichín, acailite, Fagus grandifolia var. Mexicana, endémico
menta espinosa de San Diego, Acanthomintha ilicifolia, no endémico
Litsea glaucescens, no endémico
Eichhornia azurea, no endémico
Eichhornia heterosperma, no endémico
Eichhornia paniculata, no endémico
Eurystemon mexicanum, no endémico
Heteranthera oblongifolia, no endémico
Heteranthera seubertiana, no endémico
Magnolia dealbata, no endémico
Euphorbia conzattii, endémico
lomboi de playa, Jatropha giffordiana, endémico
fremontia, Fremontodendron mexicanum, no endémico
Mortoniodendron guatemalense, no endémico
Tilia americana mexicana, no endémico
Potamogeton amplifolius, no endémico
Potamogeton praelongus, no endémico
Nymphaea novogranatensis, no endémico
ciprés de Tecate, ciprés negro, Cupressus forbesii, endémico
ciprés brillante, ciprés de Guadalupe, Cupressus guadalupensis, endémico
oyamel de Jalisco, Abies guatemalensis, no-endémico
oyamel de Juárez, Abies hickelii, endémico
pinabete espinoso, Picea chihuahuana, no-endémico
Picea engelmannii mexicana, no-endémico
pinabete de Nuevo León, Picea martinezii, no-endémico
Pinus attenuata, no-endémico
pino de Honduras, Pinus caribaea hondurensis, no-endémico
pino de brea, Pinus coulteri, no-endémico
piñón de octubre, Pinus culminicola, endémico
pino de Jalisco, Pinus jaliscana, endémico
pino azul, *Pinus maximartinezii*, endemic
pino peninsular, *Pinus muricata*, non-endemic
piñón de Nelson, *Pinus nelsonii*, endemic
pino piñonero llorón, *Pinus pinceana*, endemic
pino de Coalcomán, *Pinus rzedowskii*, endemic
Guadua spinosa, non-endemic
Olmeca recta, endemic
Olmeca reflexa, endemic
Orcuttia californica, non-endemic
Triniochloa laxa, non-endemic
Triniochloa micrantha, non-endemic
Zea perennis, endemic
Oxera longifolia, endemic
Nepheleps cordifolia, non-endemic
Hydrangea nebulicola, endemic
Arce, maple, *Acer saccharum skutchii*, non-endemic
Echeveria elegans, endemic
Echeveria laui, endemic
Echeveria purpusorum, endemic
Echeveria setosa ciliata, endemic
Echeveria setosa deminuta, endemic
Echeveria setosa minor, endemic
Echeveria setosa oteroi, endemic
Echeveria setosa setosa, endemic
Graptopetalum macdougallii, endemic
Sedum frutescens, endemic
Sedum suaveolens, endemic
Louteridium donnell-smithii, non-endemic
Hesperaloea palmeri, non-endemic
Selaginella porphyrospora, non-endemic
Sparganium americanum, non-endemic
Sparganium eurycarpum, non-endemic
huevos de víbora, *Amoreuxia wrightii*, non-endemic
Frankenia johnstonii, non-endemic

INVERTEBRATES

tábano de las dunas, *Brennania belkini*
camaroncillo, *Potamalpheops stygcicola*, endemic
chacales, *Typhlatya campecheae*
acocil, cangrejo de agua dulce, *Procamburus regiomontanus*, endemic
langostino, *Macrobachium acherontium*
langostino, *Neopalaemon nahuatlus*
langostino, *Troglocaracaus perezfarfantae*
cangrejo de la barrancas, *Psuedothelphusa dugesii*, endemic
cangrejo, *Typhlopsedothelphusa mocinoi*
acerolita de mar, *Limulus polyphemus*
remipedo, *Speleonectes tumulensis*, endemic
Cyrtontaias tampoensis tecomatensis
Megalonaia nicklineana
Coahuilix hubsi, endemic
Cochliopina milleri, endemic
Durangonella coahuilae, endemic
Mexipyrus churinceanus, endemic
Mexithauma quadripaludium, endemic
Nymphophilus minckleyi, endemic
Paludiscala caramba, endemic

FISH

charal La Caldera, *Menidia bartoni*, endemic
charal tarasco, *Menidia charari*, endemic
charal del Santiago, *Menidia riojai*, endemic
matalote de Sonora, *Catostomus insignis*, non-endemic
matalote jorobado, *Xyrauchen texanus*, endemic
pupo del Lerma, *Algansea barbata*, endemic
carpita La Concha, sardinita Nazas, *Cyprinella alvarezdelvillari*, endemic
sardinita or carpa bocagrande, *Cyprinella bocagrande*, endemic
sardinita or carpa del Cochos, *Cyprinella panarcys*, endemic
sardinita or carpa de Cuatrociénegas, *Cyprinella xanthicara*, endemic
carpa diabla, *Dionda diaboli*, endemic
carpa del Bravo, *Dionda episcopa*, endemic
carpa quijaronia, *Dionda mandibularis*, endemic
carpa manchada, *Dionda melanops*, endemic
carpa manchada, *Dionda melanops*, endemic
carpita del Gila, *Gila intermedia*, non-endemic
carpa de Saltillo, *Gila modesta*, endemic
carpita yaqui, *Gila purpurea*, non-endemic
carpa del Salado, *Notropis saladonis*, endemic
carpa de Parras, *Stypodon signifer*, endemic
almirante, *Millerichthys robustus*, endemic
cachorrito de Medialuna, *Cualac tesselatus*, endemic
cachorrito Cecilia, *Cyprinodon ceciliae*, endemic
cachorrito escondido, *Cyprinodon esconditus*, endemic
cachorrito Carbonera, *Cyprinodon fontinalis*, endemic
cachorrito de Julimes, burrito de Julimes, *Cyprinodon julimes*, endemic
cachorrito cangrejero, *Cyprinodon labiosus*, endemic
cachorrito Charco Palmas, *Cyprinodon longidorsalis*, endemic
cachorrito escamudo, *Cyprinodon macrolepis*, endemic
cachorrito del desierto, *Cyprinodon macularius*, endemic
cachorrito gigante, *Cyprinodon maya*, endemic
cachorrito del Mezquital, *Cyprinodon meeki*, endemic
cachorrito cabezon, *Cyprinodon pachycephalus*, endemic
cachorrito boxeador, *Cyprinodon simus*, endemic
cachorrito besucon, *Cyprinodon suavium*, endemic
cachorrito dorsal larga, *Cyprinodon verecundus*
cachorrito Verónica, *Cyprinodon veronicae*
sardinilla de Península, *Fundulus lima*, endemic
sardinita Cuatrociénegas, *Lucania interioris*, endemic
mexcalpique de Tuxpan, *Allopondichthys hubbsi*, endemic
mexcalpique de escama, *Allopondichthys polylepis*, endemic
mexcalpique de Tamazula, *Allopondichthys tamazulae*, endemic
tiro Catarina, *Allotoca catarinae*, endemic
chorumo, *Allotoca diazi*, endemic
tiro, *Allotoca dugesii*, endemic
tiro rayado, *Allotoca goslinei*, endemic
tiro rayado, *Allotoca regalis*, endemic
mexcalpique cola azul, *Ameca splendens*, endemic
mexcalpique del Toboso, *Characodon audax*, endemic
mexcalpique arcoíris, *Characodon lateralis*, endemic
mexcalpique, *Girardinichthys viviparux*, endemic
mexcalpique michoacano, cherehuita, *Hubbsina turneri*, endemic
tortuga almizclera chopontil, endémica
tortuga pecho quebrado de Sonoyta, endémica
tortuga marina laúd, endémica
tortuga riverina centroamericana, endémica
tortuga golfina, tortuga marina escamosa del Pacífico, endémica
tortuga marina escamosa del Atlántico, tortuga lora, endémica
tortuga marina de carey, endémica
tortuga marina verde del Atlántico, tortuga blanca, endémica
tortuga marina verde, endémica
tortuga marina del oeste, Totoaba macdonaldi, endémica
tortuga marina del Pacífico, tortuga prieta, endémica
tortuga marina verde, endémica
tortuga marina de carey, endémica
tortuga marina del Pacífico, endémica
tortuga marina del oeste, Totoaba macdonaldi, endémica

REPTILES

lagarto alicantce de Bogert, Abronia bogerti, endémica
lagarto alicantce de Chiszar, Abronia chiszarii, endémica
lagarto alicantce verde, Abronia ochoterenai, endémica
lagarto alicantce de Cerro Baul, Abronia ornelasi, endémica
lagarto alicantce de Reid, Abronia reidi, endémica
lagarto de cristal cuello simple, Anguis incomptus, endémica
lagarto alicantce cuello rugoso, Barisia rudicollis, endémica
lagartija arenera, lagartija de arena, Uma exsul, endémica
lagartija arenera del Colorado, cachora, Uma notata, non-endémica
lagartija arenera de Chihuahua, Uma paraphysa, endémica
huico de Rodeck, Aspidoscelis rodecki, endémica
vibora de cascabel, Crotalus transversus, endémica
lagartija escofina de Mapimi, Xantusia bolsonae, endémica
lagartija nocturna de Sánchez, Xantusia sanchezi, endémica
tortuga marina caguama, Caretta caretta, non-endémica
tortuga marina verde del Pacífico, tortuga prieta, Chelonia agassizi, non-endémica
tortuga marina verde del Atlántico, tortuga blanca, Chelonia mydas, non-endémica
tortuga marina de carey, Eretmochelys imbricata, non-endémica
tortuga marina escamosa del Atlántico, tortuga lora, Lepidochelys kempii, non-endémica
tortuga golfinha, tortuga marina escamosa del Pacífico, Lepidochelys olivacea, non-endémica
tortuga riverina centroamericana, tortuga blanca, Dermatemys mawii, non-endémica
tortuga marina laud, Dermochelys coriácea, non-endémica
tortuga pecho quebrado de Sonoyta, Kinosternon sonoriense longifemorale, endémica
tortuga almizclera chontolt, Claudius angustatus, non-endémica
galápago de Mapimí, *Gopherus flavomarginatus*, endemic
tortuga de concha blanda negra de Cuatro Ciéneas, *Apalone spinifera atra*, endemic

BIRDS

pato real, *Cairina moschata*, non-endemic
cisne de tundra, *Cygnus columbianus*, non-endemic
colibrí cola hendida, *Doricha eliza*, endemic
colibrí oaxaqueño, *Eupherusa cyanophrys*, endemic
cueta cresta corta, *Lophornis brachylophus*, endemic
cónor californiano, *Gymnogyps californianus*, non-endemic
gorrión rey, *Sarcoramphus papa*, non-endemic
cigüeña jabinú, *Jabiru mycteria*, non-endemic
tórtola pecho morado, *Claravis mondetoura*, non-endemic
paloma perdiz taxtleña, *Geotrygon carrikeri*, endemic
monito garganta azul, *Aspatha gularis*, non-endemic
momoto pico quilla, *Electron carinatum*, non-endemic
alcua oscura austral, *Pychoramphus aleuticus australis*, endemic
mérugul de Craveri, *Synthliboramphus craveri*, non-endemic
ostero americano, *Haematopus palliatus frazari*, non endemic
choro chiflador, *Charadrius melodus*, non-endemic
charrán embriado guerrerense, *Sternula anaethetus nelsoni*, non-endemic
playero canuto, *Calidris canutus roselaari*, non-endemic
zarapito boreal, *Numenius borealis*, non-endemic
águila cabeza blanca, *Haliaeetus leucocephalus*, non-endemic
águila arpa, *Harpia harpyja*, non-endemic
águila solitaria, *Harpymhalaeus solitarius*, non-endemic
águila crested, *Morphnus guianensis*, non-endemic
águila elegante, *Spizaetus ornatus*, non-endemic
águila tira, *Spizaetus tyrannus*, non-endemic
águila blanquinegra, *Spizastur melanoleucus*, non-endemic
halcón pecho rufo, *Falco deiroleucus*, non-endemic
hocoaisán, *Crax rubra griscorni*, endemic
pavón, guan cornudo, *Oreophasis derbianus*, non-endemic
pajúl, *Penelope nigra*, non-endemic
codorniz Cotuí, *Colinus virginianus ridgwayi*, endemic
codorniz coluda veracruzana, *Dendrortyx barbatus*, endemic
ave sol, *Euryopyga helias*, non-endemic
gruilla blanca, *Grus americana*, non-endemic
polluela amarilla, *Cutornicus nivosus munckmani*, endemic
polluela negra, *Laterallus jamaicensis coturniculus*, non-endemic
rascón real, *Rallus elegans tenuirostris*, endemic
rascón picudo de Banco Chinchorro, *Rallus longirostris Grossi*, endemic
rascón picudo californiano, *Rallus longirostris levipes*, endemic
rascón picudo yucateco, *Rallus longirostris pallidus*
chara azul, *Cyanocorax beecheii*, endemic
chara pinta, *Cyanocorax dickeyi*, endemic
chara garganta blanca, *Cyanolyca mirabilis*, endemic
chara enana, *Cyanolyca nana*, endemic
cascanueces, *Nucifraga columbiana*, non-endemic
trepatroncos gigante de Omiltemi, *Xiphoctes promeropirrhynchos omiltemensis*, endemic
zacatónero istmeño, *Aimophila sumichrasti*, endemic
semillero azul gris, *Amauropiza concolor*, non-endémic
junco ojo oscuro, *Junco hyemalis insularis*, endemic
gorrión cantor de Coronados, *Melospiza melodia coronatorum*, endemic
gorrión indefinido altiplanero or gorrión de Worthen, *Spizella wortheni*, endemic
gorrión serrano, *Xenospiza baileyi*, endemic
pinzón de Guadalupe, *Carpodacus mexicanus amplus*, endemic
pinzón de San Clemente, *Carpodacus mexicanus elementis*, endemic
centzontle de Socorro, *Mimus graysoni*, endemic
cuitlacoche de Cozumel, *Toxostoma guttatum*, endemic
chipe cachete amarillo, *Dendroica chrysoparia*, non-endemic
chipe rosado, *Ergaticus versicolor*, non-endemic
mascarita peninsular, *Geothlypis beldelingi*, endemic
mascarita de Altamira, *Geothlypis flavovelata*, endemic
mascarita transvolcánica, *Geothlypis speciosa*, endemic
cuitlacoche de Cozumel, *Toxostoma guttatum*, endemic
chipe cachete amarillo, *Dendroica chrysoparia*, no endemic
chipe rosado, *Ergaticus versicolor*, non-endemic
mascarita peninsular, *Geothlypis beldelingi*, endemic
mascarita de Altamira, *Geothlypis flavovelata*, endemic
mascarita transvolcánica, *Geothlypis speciosa*, endemic
pinzón de Guadalupe, *Regulus calendula obscurus*, endemic
tángara chiapaneca, *Tangara cabanisi*, no endemic
matraca yucateca, *Campylorhynchus yucatanicus*, endemic
chivirín de Nava, *Hylorchilus navai*, endemic
chivirín saltarroca de Guadalupe, *Salpinctes obsoletus guadeloupensis*, endemic
mosquero real, *Onychorhynchus coronatus*, non-endemic
vireo gorra negra, *Vireo atricapilla*, non-endemic
vireo de Bell californiano, *Vireo bellii pusillus*, non-endemic
paño cenizo, *Oceanodroma homochroa*, non-endemic
paño de Leach de Socorro, *Oceanodroma leucorhoa socorrensis*, non-endemic
paño de Leach de Coronados, *Oceanodroma leucorhoa willetti*, non-endemic
petrel de Cook, *Pterodroma cookii*
pardela de Revillagigedo, *Puffinus auricularis auricularis*, endemic
pájaro de Moore, *Puffinus opisthomelas*, non-endemic
choro de Guadalupe, *Amazona aurea*, non-endemic
choro de Leach, *Amazona finschi*, endemic
choro de Leach, *Amazona viridigenalis*, endemic
loro cabeza oscura, *Pionopsitta haematotis*, non-endemic
cotorra serrana occidental, *Rhynchopsitta pachyrhyncha*, endemic
cotorra serrana oriental, *Rhynchopsitta pachyrhyncha*, endemic
tecolote canelo, *Aegolius ridgwayi*, non-endemic
tecolote tamaulipeco, *Glaucidium sanchezi*, endemic
búho leonado, *Strix fulvescens*, non-endemic
quetzal mesoamericano, *Pharomachrus mocinno*, non-endemic

AMPHIBIANS

rana de Moore, *Lithobates johni*, endemic
rana guerrerense, *Lithobates omiltemanus*, endemic
rana poblana, *Lithobates pueblae*, endemic
rana de Tláloc, *Lithobates talacoi*, endemic
salamandra, *Ambystoma mexicanum*, endemic
salamandra saltarina negra, *Ictaluridron niger*, endemic
tritón manchas negras, *Notophthalmus meridionalis*, non-endemic
MAMMALS

Berrendo, *Antilocapra americana*, non-endemic
bura de isla cedros, venado bura, *Odocoileus hemionus cerrosensis*, endemic
bisonte americano, *Bos bison bison*, non-endemic
pecari de labios blancos, *Tayassu pecari ringens*, non-endemic
ocelote, tigrillo, *Leopardus pardalis*, non-endemic
ocelote, margay, *Leopardus wiedii*, non-endemic
jaguar, tigre, *Panthera onca*, non-endemic
tayra, *Eira barbara*, non-endemic
nutria marina, *Enhydra lutris nereis*, non-endwemic
mapache de Islas Marías, *Procyon insulares*, endemic
mapache de Cozumel, *Procyon pygmaeus*, endemic
oso negro, *Ursus americanus eremicus*, non-endemic
ballena franca, *Eubalaena japonica*, non-endemic
vaquita, *Phocoena sinus*, endemic
armadillo centroamericano, armadillo rabo liso norteño, *Cabassous centrales*, non-endemic
m urcielago platanero, *Mousycterus harrisoni*, endemic
vampiro falso de Linneo, *Vampyrum spectrum*, non-endemic
miotis cabeza plana, *Myotis planiceps*, endemic
miotis pescador, *Myotis vivesi*, endemic
tlacuache de agua, *Chironectes minimus*, non-endemic
topo occidental, *Scalopus aquaticus*, non-endemic
topo pata ancha, *Scapanus latimanus anthonyi*, non-endemic
teporingo, conejo de los volcanes, *Romerolagus diazi*, endemic
conejo matarralero de la Isla Cedros, *Sylvilagus bachmani cerrosensis*, endemic
conejo de Tres Marías, *Sylvilagus graysoni*, endemic
conejo de Omiltemi, *Sylvilagus insomus*, endemic
conejo de San José, *Sylvilagus mansuetus*, endemic
tapir centroamericano, *Tapirus bairdii*, non-endemic
oso hormiguero dorado, *Cyclopotes didactylus*, non-endemic
oso hormiguero, brazo fuerte, tamandúa norteño, *Tamandua mexicana hesperia*, endemic
oso hormiguero, brazo fuerte, tamandúa norteño, *Tamandua mexicana mexicana*, non-endemic
lobo fino de Guadalupe, *Arctocephalus townsendi*, endemic
mono aullador, saraguato de manto, *Alouatta palliata*, non-endemic
mono aullador, saraguato yucateco, *Alouatta pigra*, non-endemic
mono araña, *Ateles geoffroyi*, non-endemic
castor, *Castor canadensis*, non-endemic
puerco espín del norte, *Erethizon dorsatum*, non-endemic
tuza michoacana, *Zygogeomys trichopus*, endemic
ratón de abazones sonorense de Monserrat, *Chaetodipus baileyi insulares*, endemic
ratón de abazones de San José, *Chaetodipus spinatus bryanti*, endemic
ratón de abazones de San Francisco, *Chaetodipus spinatus latjugularis*, endemic
rata canguro de San José, *Dipodomys insulares*, endemic
rata canguro de Margarita, *Dipodomys margaritae*, endemic
meteoro de California, *Microtus californicus*, non-endemic
meteoro de prado, *Microtus pennsylvanicus*, non-endemic
rata cambalachera de San Martín, *Neotoma martiensis*, endemic
rata cambalachera de Turner, *Neotoma varia*, endemic
ratón de Ángel de la Guarda, *Peromyscus archiata*, endemic
derrito de las praderas, perro llanero mexicano, *Cynomys mexicanus*, endemic
manati del Caribe, *Trichechus manatus*, non-endemic
musaraña de Arizona, *Sorex arizonae*, non-endemic